Часто ученики 10 класса относятся к занятиям с легким пренебрежением, ведь ГИА уже позади, а ЕГЭ кажется . На уроках математики в 10 классе учащиеся знакомятся с такими темами, как «Числовые функции и их свойства», «Тригонометрические функции» и «Тригонометрические уравнения», «Производная». Для закрепления изученного материала, школьникам нужно много и упорно заниматься решением задач разной сложности.
Олимпиадные задания по математике помогают ученикам 10 класса закрепить полученные знания, а также расширить и углубить их.
На этой странице собраны примеры уравнений и задач с ответами и решениями, а также математические загадки, решение которых требует нестандартного мышления. Данный материал может использоваться на уроках или во время самостоятельной подготовки. Рекомендован учителям, репетиторам, родителям и учащимся.
Уравнения
Задачи
Задача №1
Учащиеся 10 «а» и 10«б» классов отправились на экскурсию. Юношей было 16, учащихся 10«б» класса – 24, девушек 10«а» столько, сколько юношей из 10«б» класса. Сколько всего учащихся побывали на экскурсии?
Задача №2
Четырехугольник ABCD вписан в окружность диаметра 17. Диагонали АС и ВD перпендикулярны. Найдите стороны АВ, ВС, CD, если известно, что AD = 8 и AB : CD = 3 : 4
Задача №3
Через диагональ прямоугольного параллелепипеда и точку, лежащую на боковом ребре, не пересекающем эту диагональ, проведена плоскость так, чтобы площадь сечения параллелепипеда этой плоскостью была наименьшей. Найдите длины сторон основания параллелепипеда, если известно, что диагонали сечения равны 6 и 2√3 , а угол между ними 30°.
Задача №4
Найти множество значений параметра a, при которых дискриминант уравнения +
+ 1 = 0, в 9 раз больше квадрата разности двух его различных корней?
Задача №5
Известно, что tga и tg3a целые. Найдите все возможные значения tga
Математические загадки
Загадка №1
Можно ли провести в городе 10 автобусных маршрутов и установить на них остановки так, что для любых 8 маршрутов найдётся остановка, не лежащая ни на одном из них, а любые 9 маршрутов проходят через все остановки?
Загадка №2
Сколько существует четырехзначных чисел, не делящихся на 1000, у которых первая и последняя цифры чётны?
Загадка №3
На доске через запятую выписаны числа 1, 2, 3, … 99. Двое играющих по очереди заменяют одну из имеющихся запятых на знак «+» или «*» (умножить). После того как запятых не останется, игроки вычисляют значение полученного выражения. Если результат является нечётным числом, то выигрывает первый, а если чётным – второй. Кто выигрывает при правильной игре?
Загадка №4
Расположите натуральные числа от 1 до 100 в строку так, чтобы разность между любыми двумя соседними числами была равна 2 или 3.
Загадка №5
На какое наибольшее число натуральных слагаемых можно разложить число 96 так, чтобы все слагаемые были больше 1 и попарно взаимно просты?
Ответы к уравнениям
Уравнение | № 1 | № 2 | № 3 | № 4 | № 5 |
Ответ | ![]() |
![]() |
![]() |
![]() |
![]() |
Уравнение | № 6 | № 7 | № 8 | № 9 | № 10 |
Ответ | ![]() |
![]() |
![]() |
![]() |
![]() |
Ответы к задачам
Задача 1
40 учащихся.
Задача 2
AB = 10,2; CD = 13,6; ВС = 15.
Задача 3
1; √3
Задача 4
a ∈ {−3}
Задача 5
−1; 0 или 1.
Ответы на загадки
Загадка 1
Ответ: можно.
Решение. Рассмотрим, например, 10 прямых плоскости. Никакие две из которых не параллельны и никакие три не пересекаются в одной точке. Будем считать, что прямые – это автобусные маршруты, а их точки пересечения – остановки. При этом с каждой остановки можно проехать на любую другую: если остановки лежат на одной прямой, то без пересадки, а если нет, то с одной пересадкой. Далее, если даже отбросить в этой схеме одну прямую, то всё ещё останется возможность проехать с каждой остановки на любую другую, сделав в пути не больше одной пересадки. Однако если отбросить две прямые, то одна остановка (точка пересечения этих прямых) уже вовсе не будет обслуживаться оставшимися маршрутами и с неё будет невозможно проехать на какую- либо другую.
Загадка 2
Ответ: 1996.
Решение. Первая цифра числа может быть любой из четырёх (2,4,6 или 8), вторая и третья – любой из десяти каждая, а четвёртая, если отказаться от условия « не делящихся на тысячу», — любой из пяти ( 0,2, 4,6 или 8). Следовательно, четырёхзначных чисел, в записи которых первая и последняя цифры чётны, всего имеется 4+10+10+5= 2000; так как среди них четыре числа (2000, 4000, 6000, 8000) делятся на 1000, то чисел, удовлетворяющих условию задачи, окажется 2000 – 4 = 1996.
Загадка 3
Ответ: выигрывает второй игрок.
Решение. Для достижения успеха второй игрок может пользоваться симметричной стратегией: если первый ставит какой – то знак между числами к и к+1, то второй ставит такой же знак между числами 99-к и 100-к. Выражение, которое получится в конце игры, будет содержать несколько слагаемых – произведений, причём слагаемое, содержащее число 50, является чётным, а остальные слагаемые естественным образом разобьются на пары «симметричных» слагаемых одинаковой чётности. Таким образом, выражение, полученное в конце игры, окажется чётным.
Загадка 4
Решение. Например, так:1, 3, 5, 2, 4, 6, 8,10, 7, 9 , 11, … , 96, 98, 100,97, 99 (в каждой пятёрке порядок расположения чисел 5к+1, 5к+3, 5к+5, 5к+2, 5к+4).
Загадка 5
Ответ: на семь слагаемых.
Решение. Приведём пример разбиения числа 96 на семь слагаемых:
96 = 2 + 5 + 7 + 11 + 13 + 17 + 41.
Если слагаемых больше, то среди них не менее восьми нечётных ( если их семь, то сумма нечётна). Заменим каждое из них на наименьший простой сомножитель. При этом сумма не увеличится, и все слагаемые будут различны. Но сумма восьми наименьших нечётных простых чисел равна 98.
Другие классы
- Олимпиада по математике 11 класс
- Олимпиада по математике 9 класс
- Олимпиада по математике 10 класс
- Олимпиада по математике 8 класс
- Олимпиада по математике 7 класс
- Олимпиада по математике 6 класс
- Олимпиада по математике 5 класс
- Олимпиада по математике 4 класс
- Олимпиада по математике 3 класс
- Олимпиада по математике 2 класс
- Олимпиада по математике 1 класс