Олимпиада по математике 11 класс, задания, уравнения, задачи с ответами

Курс математики в выпускном классе посвящен изучению степеней и корней, знакомству с показательной и логарифмической функцией, интегралами и элементами математической статистикой. Отдельное внимание в 11 классе посвящено повторению изученного за весь курс математики и подготовке к грядущему экзамену.

В связи с этим, для учеников 11 класса особенно важно участие в олимпиадах по математике и дополнительные занятия, посвященные решению заданий различной сложности.

На этой странице собраны задания для подготовки к олимпиаде по математике для 11 класса. Представлены уравнения, задачи и математические загадки с ответами и решениями. Этот материал может быть использован учителями или репетиторами для повышения уровня знания учеников.

Уравнения

1. Решите уравнение: 3^{7 - x} = 3

2. Решите уравнение: (x − 8)² = (x + 9)²

3. Решите уравнение: log2 (5 + 4x) = log2 (1 − 4x) + 1

4. Решите уравнение: log5 (x^{2} + 5x) = log5 (x^{2} + 9)

5. Решите уравнение: log2 (4 − x) = 7

6. Решите уравнение: x^{2}17x + 72 = 0

7. Решите уравнение: (2x + 7)² = (2x − 1)²

8. Решите уравнение: (5x − 8)² = (5x − 2)²

9. Решите уравнение: (x − 6)² = − 24x

10. Решите уравнение: x^{2} + 9 = (x + 9)²

Задачи

Задача №1
Докажите, что уравнение  xy = 2006 (x + y) имеет решения в целых числах.

Задача №2
Докажите, что если α, β, γуглы произвольного треугольника, то справедливо тождество cos2α + cos2β + cos2γ + 2 cosα cosβ cosγ = 1.

Задача №3
Три шара радиуса R касаются друг друга и плоскости α, четвертый шар радиуса R положен сверху так, что касается каждого из трех данных  шаров. Определите высоту «горки» из четырех шаров.

Задача №4
Докажите неравенство x^{2} −2x^{3}< 1/6 на луче [1/4; + ∞).

Задача №5
В прямоугольник 20 x 25 бросают 120 квадратов 1 x 1. Докажите, что в прямоугольник можно поместить круг с диаметром, равным 1, не имеющий общих точек ни с одним из квадратов.

Математические загадки

Загадка №1

Сколько лет человеку, если в 2012 году его возраст оказался равным сумме цифр года его рождения.

Загадка №2

Двадцать одна девочка и двадцать один мальчик принимали участие в математическом конкурсе. Каждый участник решил не более шести задач. Для любых девочки и мальчика найдётся хотя бы одна задача, решённая обоими. Докажите, что была задача, которую решили не менее трёх девочек и не менее трёх мальчиков.

Загадка №3

Существует ли многогранник с нечетным числом граней, каждая из которых есть многоугольник с нечетным числом сторон?

Загадка №4

В каждую клетку квадратной таблицы 25 x 25 вписано произвольным образом одно из чисел 1 или -1. Под каждым столбцом пишется произведение всех чисел, стоящих в этом столбце. Справа от каждой строки пишется произведение всех чисел, стоящих в этой строке. Докажите, что сумма 50 написанных произведений не может оказаться равной нулю.

Загадка №5

Сумма цифр в десятичной записи натурального числа n равна 100, а сумма цифр числа 44n равна 800.

Чему равна сумма цифр числа 3n?

Ответы к уравнениям

Уравнение № 1 № 2 № 3 № 4 № 5
Ответ 6 8,5 ∈ [8;9) − 0,25 1,8 -124
Уравнение № 6 № 7 № 8 № 9 № 10
Ответ 9; 8 -1,5 1 -6 -4

Ответы к задачам

Задача 1
Преобразуем уравнение к следующему виду: (x – 2006)(y  2006) = 20062. Уравнение имеет решения, например, x = y = 4012.

Задача 2
Преобразуем выражение в левой части равенства, учитывая, что α + β + γ = π, и применяя формулы: cos² x = (1 + cos 2x)/2, cos x = cos (π  x), cos x + cos y = (2cos((x + y)/2)) cos((x  y)/2), получим справедливое тождество.

Задача 3
Пусть четыре шара радиуса R c центрами A, B, C, D касаются друг друга и первые три из них – плоскости a в точках A1, B1, C1 . Тогда точки A, B, C, D являются вершинами правильной пирамиды с ребром 2R. Вершина D этой пирамиды проектируется в центр основания О.

Высота «горки» из четырех шаров равна сумме OD + 2R = 2R \sqrt{}\frac {2}{3} + 1

Задача 4
Пусть y = x^{2} 3x^{3}. Тогда y^{1}  = 2x 9x^{2} и с помощью метода интервалов получаем, что y^{1} < 0 при всех x >2/9. Но 1/4>2/9, следовательно, функция y(x) убывает на луче [1/4; +∞]. Это значит, что x^{2} 3x^{3} < 1/16 3/64 = 1/64 < 1/64.

Задача 5
Окружим каждый квадрат полоской шириной 1/2. Образующие фигуры тоже квадраты со стороной 1 + 2 x 1/2 = 2, имеют площадь равную 4. Их общая площадь равна 4 x 120 = 480, в то время как искомая площадь равна 500. Следовательно, найдется точка, которая не покрыта построенными квадратами, но это значит, что она удалена от данных квадратов не меньше чем на по всем направлениям. Круг радиуса  с центром в этой точке не имеет общих точек  ни с одним из квадратов.

Ответ: 175 центов

Ответы на загадки

Загадка 1

1 вар. Человек родился в 19mn году, тогда

          2012 19mn= 1 + 9 + m + n

          2012 1900 m n = 10 + m + n

          102 = 11m + 2n

m = 8, n = 7, значит 1987 год, ему 25 лет.

2 вар. Человек родился в 200n году, тогда

          2012 200n = 2 + n

          2012 2000 n = 2 + n

          12 2 = 2n

n = 5, значит 2005 год, ему 7 лет.

Загадка 2
Предположим, что нашлась задача, которую решили не более двух девочек или не более двух мальчиков.

Будем считать задачу «красной», если её решили не более двух девочек и «чёрной» в противоположном случае (тогда её решили не более двух мальчиков).

Представим шахматную доску с 21-й строкой, каждая из которых соответствует девочке, и 21-м столбцом, каждый из которых соответствует мальчику.

Тогда каждая клетка соответствует паре «мальчик–девочка». Каждую клетку покрасим в цвет какой-нибудь задачи, которую решили и мальчик-строка и девочка-столбец.

По принципу Дирихле в каком-нибудь столбце найдётся 11 чёрных клеток, или в какой-нибудь строке найдутся 11 красных клеток (потому что иначе получится, что всего клеток не более чем 21 × 10 + 21 × 10 < 21²).

Рассмотрим, например, девочку-строку, содержащую хотя бы 11 чёрных клеток.

Каждой из этих клеток соответствует задача, решённая максимум двумя мальчиками.

Тогда мы можем указать не менее 6 различных задач, решённых этой девочкой. В силу первого условия никаких других задач девочка не решала, но тогда максимум 12 мальчиков имеют общие решённые задачи с этой девочкой, что противоречит второму условию.

Точно также разбирается случай, если в каком-нибудь столбце найдутся 11 красных клеток.

Загадка 3

Пусть такой многогранник существует. Обозначим за 1, 2, …, число ребер на гранях, тогда 1 + 2 + … – удвоенная сумма всех ребер многогранника, она – четная. А в левой части стоит нечетная сумма слагаемых, каждое из которых – нечетно. Получили противоречие. Значит, такого многогранника не существует

Загадка 4
Найдем произведение всех 25 чисел, записанных под каждым столбцом и всех 25 чисел, записанных справа от строчек. Так как в этом произведении каждое из чисел квадратной таблицы входит по два раза, то произведение этих 50 произведений, в каждом из которых стоит по 25 множителей, будет положительным, т. е. равно 1. А так как произведение 50 чисел положительно, то отрицательных сомножителей будет четное число (2, 4, …, 50). Сумма же 50 произведений может быть нулем лишь в случае, когда 25 слагаемых равно 1, а 25 слагаемых равно — 1, т. е. слагаемых с — 1 должно быть нечетное число. А это значит, что сумма 50 написанных произведений не может равняться нулю.

Загадка 5
Заметим, что 44n есть сумма 4 экземпляров числа n и 4 экземпляров числа 10n.

Если складывать эти числа поразрядно, то в каждом разряде окажется сумма учетверённой цифры из этого же разряда числа n и учетверённой цифры из следующего разряда.

Если при этом не происходит никаких переносов, то каждая цифра числа n складывается 8 раз, и сумма цифр во всех разрядах оказывается равной 800. При переносах же сумма цифр, очевидно, уменьшается (так как из одного разряда вычитается 10, а к другому прибавляется только 1). Поэтому в ситуации условия задачи переносов не происходит. Это означает, в частности, что любая цифра числа n не превосходит 2. Тогда при умножении n на 3 просто умножается на 3 каждая его цифра, а, значит, и сумма цифр. Поэтому сумма цифр числа 3n равна 300.

Другие классы

Поделись с коллегами: