Олимпиада по математике 8 класс, задания, уравнения, задачи с ответами

Математика — это та наука, которую можно изучить, только прилагая все возможные усилия. Изучая курс математики в 8 классе, школьники знакомятся с такими интересными разделами, как решение квадратных уравнений и составление таких уравнений для решения задач, решение дробных рациональных уравнений и мн. др.

Углубить и систематизировать знания, полученные на уроках, ученики могут только решая практические задания, выполняя самостоятельные и контрольные работы и участвуя в олимпиадах по математике.

На сайте подготовлены олимпиадные задания по математике с ответами и решениями. При подготовке к олимпиаде можно использовать примеры уравнений, задач и математических загадок, представленных на этой странице.

Скачайте задания, заполнив форму!

После того как укажете данные, кнопка скачивания станет активной

Уравнения

1. Решите уравнение: 2x²+5x-3=0.

2. Решите уравнение: 4x²+21x+5=0.

3. Найдите все корни уравнения: 3x²-10x+3=0.

4. Решите уравнение: 5x²-14x-3=0.

5.Найдите все корни уравнения: 71x²+144x+4=0

6. Решите уравнение: 9x²-30x+25=0

7.Найдите все корни уравнения: 2x²+9x+7=0

8. Решите уравнение: 5x²-26x=0

9. Решите уравнение: 64x+4x²=0

10. Решите уравнение: 9x²-4=0

Задачи

Задача №1
Работник заключил контракт на месяц на следующих условиях. За каждый отработанный день он получает 100 рублей. Если же он прогуливает, то не только ничего не получает, но подвергается штрафу в размере 25 рублей за каждый день прогула. Через 30 дней выяснилось, что работник ничего не заработал. Сколько дней он действительно работал?

Задача №2
Доктор Айболит раздал четырем заболевшим зверям 2006 чудодейственных таблеток. Носорог получил на одну больше, чем крокодил, бегемот – на одну больше, чем носорог, а слон – на одну больше, чем бегемот. Сколько таблеток придется съесть слону?

Задача №3
Три друга сделали по одному заявлению про целое число х. Петя: «Число х больше 4, но меньше 8». Вася: «Число х больше 6, но меньше 9». Толя: «Число х больше 5, но меньше 8». Найдите число х, если известно, что двое из друзей сказали правду, а третий солгал. Нужно не только проверить, что найденное число годится, но и объяснить, почему другие варианты ответа невозможны.

Задача №4
В озере водятся караси, окуни и щуки. Два рыбака поймали вместе 70 рыб, причем улова первого рыбака – караси, а улова второго – окуни. Сколько щук поймал каждый, если оба поймали поровну карасей и окуней?

Задача №5
Трое мужчин пришли к парикмахеру. Побрив первого, тот сказал: «Посмотри сколько денег в ящике стола, положи столько же и возьми 2 доллара сдачи». Тоже он сказал второму и третьему. Когда они ушли, оказалось, что в ящике денег нет. Сколько было денег в ящике первоначально, если всем удалось совершить задуманное?

Математические загадки

Загадка №1

На центральном телеграфе стоят разменные автоматы, которые меняют 20,коп. на 15, 2, 2 и 1; 15,коп. на 10, 2, 2 и 1; 10,коп. на 3, 3, 2 и 2. Петя разменял 1,руб. 25,коп. серебром на медь. Вася, посмотрев на результат, сказал: «Я точно знаю, какие у тебя были монеты» и назвал их. Назовите и вы.

Загадка №2

Сколько двоек будет в разложении на простые множители числа 1984!,? (Примечание: 1984! = 1 • 2 • 3 •  …  • 1984).

Загадка №3

Все натуральные числа поделены на хорошие и плохие. Известно, что если число A хорошее, то и число A + 6 тоже хорошее, а если число B плохое, то и число B + 15 тоже плохое. Может ли среди первых 2000 чисел быть ровно 1000 хороших?

Загадка №4

Какое наибольшее число пешек можно поставить на шахматную доску (не более одной пешки на каждое поле), если: 1) на поле e4 пешку ставить нельзя; 2) никакие две пешки не могут стоять на полях, симметричных, относительно поля e4?

Загадка №5

Сосуд имеет форму прямоугольного параллелепипеда. Как, не делая никаких измерений и не имея других емкостей, наполнить водой ровно половину объема этого сосуда?

Ответы к уравнениям

Уравнение № 1 № 2 № 3 № 4 № 5
Ответ -3;½ -5; ⅓; 3 -⅕; 3 -2; — 2/71
Уравнение № 6 № 7 № 8 № 9 № 10
Ответ 1⅔ -1; -3,5 0; 5,2 -16; 0 -⅔; ⅔

Ответы к задачам

Задача 1
Так сумма штрафа за прогул рабочего дня в четыре раза меньше заработка в день, то мы получим в итоге ноль, если на каждый день, в течение которого работник трудился, будет приходиться четыре прогула. Пусть он работал х дней, тогда прогуливал 4х. Тогда 5х=30, т.е. х=6.
Ответ: 6 дней.

Задача 2
(2006 – (1+2+3)):4=500 таблеток получил крокодил. Значит, слону придётся съесть 503 таблетки.

Ответ: 503 таблетки.

Задача 3
Ясно, что число х должно быть больше 4, но меньше 9, иначе все солгали. Поэтому для числа х есть всего четыре возможности: 5, 6, 7, 8. Если х=5, то правду сказал только Петя. Если х=8, то правду сказал только Вася. Если х=7, то правду сказали все трое. И только при х=6 правду скажут двое: Петя и Толя. Ответ: 6

Задача 4
Первый поймал число рыб кратное 9, а второй кратное 17. Но можно подобрать только два числа, дающих в сумме 70, так, чтобы одно делилось на 9, а второе – на 17. Эти числа: 36 и 34. Значит, первый поймал 36 рыб, а второй – 34. Тогда из условия следует, что оба поймали по 20 карасей и 14 окуней. Значит, первый поймал еще 2 щуки, а второй – 0.
Ответ: Первый – 2, второй – 0.

Задача 5
После того, как третий положил свои деньги, в столе оказалось 2 доллара. Это означает, что перед тем, как он это сделал, в столе был 1 доллар. Значит, после того, как второй положил деньги, в столе было 3 доллара, а перед тем, как он это сделал, в столе было 1,5 доллара. Рассуждая аналогично для первого, получаем, что перед приходом первого в столе был (1,5+2):2=1,75 долларов.

Ответ: 175 центов

Ответы на загадки

Загадка 1

Так как две пятнадцатикопеечные монеты размениваются на ту же комбинацию, что и набор из одной десятикопеечной и одной двадцатикопеечной монеты, то в исходном наборе у Пети не могло быть ни более одной пятнадцатикопеечной монеты, ни одновременно десятикопеечной и двадцатикопеечной монеты (в противном случае Вася не смог бы определить однозначно исходный набор серебра по образовавшейся меди).

Поскольку из монет 10,коп. и 20,коп. невозможно получить 1,руб. 25,коп., значит можно утверждать, что у Пети была пятнадцатикопеечная монета. Остальные монеты в сумме 1,руб. 10,коп. должны были быть одинаковыми, следовательно, десятикопеечными.

Загадка 2
Среди чисел от 1 до 1984 существует 992 четных. Каждое из них дает по крайней мере одну двойку в разложение на простые множители числа 1984!,. Две двойки в это разложение дадут числа, делящиеся на 4 (их всего 496). Далее, по 3, 4, 5, 6, 7, 8, 9 и 10 двоек соответственно дадут 248, 124, 62, 31, 15, 7, 3 и 1 чисел делящихся на 8, 16, 32, 64, 128, 256, 512 и 1024 соответственно. Сложив полученные числа, мы и получим искомую степень: 992 + 496 + 248 + 124 + 62 + 31 + 15 + 7 + 3 + 1 = 1979.

Загадка 3

Докажем, что числа C и C + 3 являются одновременно либо хорошими, либо плохими при любом значении C. Предположим для этого, что число C — хорошее, а C + 3 — плохое. Тогда с одной стороны, число C + 18 = (C + 3) + 15 должно быть хорошим, а с другой стороны, это же число C + 18 = ((C + 6) + 6) + 6 должно быть плохим. Если же предположить, что число C — плохое, а C + 3 — хорошее, то число C + 15 = ((C + 3) + 6) + 6 должно быть одновременно и плохим и хорошим. Полученное в обоих случаях противоречие доказывает, что числа C и C + 3 всегда принадлежат одному классу. Из этого следует, что любой класс вычетов по модулю 3 (см. Т5) является либо целиком хорошим, либо целиком плохим.

Среди первых 2000 чисел каждый такой класс содержит 666 или 667 чисел. Любой класс содержит меньше 1000 чисел, а любые два класса — больше 1000 чисел. Поэтому ровно 1000 хороших чисел быть не может.

Загадка 4
Все поля доски кроме вертикали a, горизонтали 8 и самого поля e4 можно разбить на пары, симметричные относительно e4. Таких пар образуется 24. По условию, на поля каждой пары можно поставить не более одной пешки. Кроме того, можно поставить не более, чем по одной пешке на поля вертикали a и горизонтали 8. Таких полей 15. На поле e4, по условию, пешки ставить нельзя. Значит, всего можно поставить не более 39 пешек. Пример расстановки 39 пешек показан на рис. 11.

Загадка 5
Нужно наклонить параллелепипед так, чтобы уровень воды находился по диагональному сечению параллелепипеда.

Скачайте задания, заполнив форму!

После того как укажете данные, кнопка скачивания станет активной

Другие классы

Поделись с коллегами: